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We have recently proposed a quantum control method based on the knowledge of the energy spectrum as a
function of an external control parameter �G. E. Murgida, D. A. Wisniacki, and P. I. Tamborenea, Phys. Rev.
Lett. 99, 036806 �2007��. So far, our method has been applied to connect the ground state to target states that
were in all cases energy eigenstates. In this paper we extend that method in order to obtain more general target
states, working, for concreteness, with a system of two interacting electrons confined in semiconductor double
quantum wells. Namely, we have shown that the same basic method can be employed to obtain localization,
entanglement, and general superpositions of eigenstates of the system.
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I. INTRODUCTION

Quantum control is an area of research of great current
interest with a vast potential for applications in quantum in-
formation technologies.1,2 The basic problem of quantum
control consists of driving externally a quantum system in
order to take it from an initial state to a target final state.
Quantum control ideas and methods are traditionally widely
applied in magnetic resonance3,4 and quantum chemistry,5

and they are advancing rapidly in the area of solid-state
nanostructures.6–9

In a series of recent publications10–12 we have presented a
method of quantum control based on the knowledge of the
energy spectrum as a function of a suitable single control
parameter. This method is useful provided that the transitions
between neighboring levels are well described by the
Landau-Zener model.13 The latter condition has allowed us
to successfully navigate the spectrum with a combination of
diabatic and adiabatic changes in the control parameter.
Other authors have also employed the navigation of the en-
ergy spectrum as a coherent quantum control tool, especially
in the field of atomic and molecular systems controlled by
lasers.14–18 We have applied our control method to two dif-
ferent physical systems with remarkable success. The first
one, which we will study in this paper, is a nanostructured
semiconductor system consisting of two interacting electrons
confined in quasi-one-dimensional quantum dots,10–12 and
the second one was the LiCN molecule.19 In both systems we
have been able to connect distant eigenstates through long
and complex paths in the energy spectrum with very high
probability.

In this paper we take the control method further: by al-
lowing not only diabatic and adiabatic transitions but also
intermediate velocities, we can arrive at more complex final
�target� states. With this generalized navigation method we
are able to achieve the creation of linear superpositions of
adiabatic states starting from the ground state. This opens a
rich menu of possibilities, such as the creation of Bell states
and other types of entangled states.

The paper is organized as follows: in Sec. II we describe
the main ingredients of our control method. In Sec. III we

present again the two-electron nanostructure. Section IV is
devoted to the results of the generalized control method.
Among the results presented, we show how to apply our
method to generate Bell states and coherent superpositions of
energy eigenstates.

II. CONTROL METHOD: NAVIGATING THE HILBERT
SPACE

Let us first review the basic ideas of our method in the
simplest possible system, i.e., a parameter-dependent two-
level system. Let us assume that these two levels have an
avoided crossing as shown in Fig. 1. At the avoided crossing,
the two energy levels approach each other and the associated
eigenstates exchange their characteristics as the external pa-
rameter sweeps through the crossing. If the avoided crossing
is traversed very slowly �adiabatic path in Fig. 1�a��, the
adiabatic theorem guarantees that one will stay in the initial
adiabatic level, but with the paradoxical consequence that the
final state will have been exchanged with the other diabatic
state. On the other hand, if the avoided crossing is traversed
very quickly �diabatic path in Fig. 1�, the characteristics of
the state are preserved. Clearly, these two limiting possibili-
ties suggest a very simple control method. The quantitative

FIG. 1. Schematic plot of the building block of our control
method. An avoided crossing and a schematic drawing of the diaba-
tic �fast�, adiabatic �slow�, and intermediate ways to cross it. �a�
Long �short� arrows represent fast �slow� variations in the control
parameter; �b� medium arrows represent the intermediate velocity.
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meaning of slow and fast transitions is given by the theory of
Landau-Zener transitions.12,13

This basic idea has allowed us to perform complicated
control tasks. Namely, we can travel through the energy
spectrum using the avoided crossings as sources of efficient
controllable choices between two adiabatic states. In this
way we can connect distant adiabatic states provided that
there exists a path going from one to the other via jumps at
avoided crossing and adiabatic evolutions in the absence of
crossings. Examples of the application of this method have
been presented in Refs. 10 and 11.

In this paper we go one step further by using not only
diabatic and adiabatic transitions but also transitions with
intermediate speeds. This type of transition gives final states
�on exit of the avoided crossing� which are linear combina-
tions of the two adiabatic states �Fig. 1�b��. The combination
of several crossings using intermediate velocities allows us
to access a great variety of final states. Thus, in this work we
generalize the control method proposed earlier and present
several applications which show the power of the improved
control technique.

III. DOUBLE QUANTUM-DOT SYSTEM

In order to explore on a concrete system the idea of using
intermediate speeds to traverse avoided crossings we will
study here a system of two interacting electrons inside a
quasi-one-dimensional double quantum dot which was used
in our previous works. The system is subject to an external
uniform electric field, whose amplitude is used as the control
parameter. The confinement of the two electrons is very nar-
row on two dimensions, which we denote as x and y, and the
double-well profile is defined along the remaining, longitu-
dinal coordinate, z. The effective Hamiltonian of the two
electrons reads

H � −
�2

2m
� �2

�z1
2 +

�2

�z2
2� + V�z1� + V�z2� + VC��z1 − z2��

− e�z1 + z2�E�t� , �1�

where m is the effective electron mass in the semiconductor
material, VC is the effective Coulomb interaction between the
electrons,20 V�z� is the confining potential �see Fig. 2�, and
E�t� is the external time-dependent electric field. We choose

as confining potential a double quantum well with well width
of 28 nm, interwell barrier of 4 nm, and 220 meV deep �a
typical depth for a GaAs-AlGaAs quantum well�. We nor-
mally assume that the initial state is the ground state, which
is a singlet. Since the Hamiltonian is spin independent, the
total spin is conserved and the spatial wave function remains
symmetric under particle exchange at all times.

Let us review some characteristics of the energy spectrum
of the two electrons and of the eigenstates which will guide
our control strategies. First we consider the spectrum as a
function of the control parameter �the external electric field�.
This spectrum is plotted in Fig. 3 with selected eigenstates.
The energies �i�E� and the eigenstates �i�E ,z1 ,z2� are ob-
tained by numerical diagonalization. For this calculation, we
have used as basis set the symmetric combinations of the
twelve lowest single-particle eigenfunctions. Thus, our basis
set of the two-particle Hilbert space has 12��12+1� /2=78
states. An important characteristic of this system in the lower
part of its spectrum is that the states have fairly well-defined
localization properties. The three possible types of localiza-
tion �both electrons in the left dot, in the right dot, or elec-
trons in different dots� are associated with the three types of
slopes seen in the spectrum �positive, negative, or almost
zero, respectively�. In Fig. 3 we show some states to illus-
trate the mentioned localization characteristics. In states �a�
and �b� the electrons are in different dots, in states �c� and �d�
both electrons are in the left dot, and in states �e� and �f� both
electrons are in the right dot. Of course, at the avoided cross-
ing the states get mixed and these well-defined properties are
lost �states �g� and �h��.

FIG. 2. Confining double-well potential in the longitudinal di-
rection of the coupled quantum-dot structure. The external electric
field is E=0 �solid lines� and E=12 kV /cm �dashed lines�.

FIG. 3. Main panel: The energy spectrum of the two interacting
electrons confined in a quasi-one-dimensional double-well semicon-
ductor nanostructure as a function of an external uniform electric
field. The first 31 energy levels are shown. Side panels: Spatial
wave functions �i�E ,z1 ,z2� corresponding to labels �a� to �h� of the
main panel. States �a� and �b� have one electron in each well, wave
functions �c� and �d� are localized in the left well, and wave func-
tions �e� and �f� have both electrons in the right well. States �a�–�f�
are far from avoided crossings and therefore have well-defined lo-
calization properties. This is not the case for eigenstates �g� and �h�,
which are at avoided crossings.
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IV. RESULTS

This section is devoted to illustrate the power of the gen-
eralized control method in which the velocities to cross the
avoided crossings are not restricted to produce diabatic and
adiabatic transitions. In other words, we will show the pos-
sibilities opened by the ability to allow intermediate veloci-
ties. Due to the potential for applications of our method, we
consider it best to illustrate its power through two important
examples of coherent control.

A. Localization

An application of quantum control that has been exten-
sively explored in the recent literature is the localization of
one or two electrons in a double-well potential. The general
idea is to start the coherent evolution in the ground state,
which in the case of two electrons is delocalized due to the
Pauli and Coulomb repulsions, and end up in a state in which
both electrons are in the same well. In order to describe the
degree of localization of the two electrons we define the
probability for both electrons to be in the left well, PLL.

PLL�t� = 	
−�

0 	
−�

0

dz1dz2���z1,z2,t��2, �2�

where ��z1 ,z2 , t� are the evolving wave functions of the two
electrons.

An easy way to localize both electrons in the left dot
using our control method starting from the ground state con-
sists of varying the electric field adiabatically in order to pass
the first avoided crossing between the first two levels located
at E=4.81 kV /cm. This process is shown in the inset of Fig.
4. �The numerical solution of the time-dependent
Schrödinger equation was obtained using the usual fourth-
order Runge-Kutta method with a time step of 0.05 fs.� The
electric field varies linearly with time and we display the

evolution of PLL for several velocities. We start at the ground
state, and accordingly PLL
0 at t=0. For a high velocity, we
expect to cross diabatically the avoided crossing and the lo-
calization properties will not change considerably. This case

is seen in curve �i� �Ė=4 �kV /cm� /ps� in Fig. 4. As the
velocity is decreased �curves �ii�–�v�� we approach a final
state that is highly localized in the left dot. There is a maxi-
mum value of the probability PLL that can be obtained with
this method, given by the probability PLL of the adiabatic
ground state after the avoided crossing. The probability of
the adiabatic ground state is plotted with open circles in Fig.
4. After the crossing it is a slowly rising function in the
plotted range and reaches the value of 0.998 at electric field

E=9 kV /cm. We see that for the velocity of curve �v� �Ė
=0.04 �kV /cm� /ps� the evolving probability PLL�t� follows
tightly the open circles and near E=9 kV /cm presents a
small oscillation bound between 0.995 and 0.9975. That is,
the maximum value of 0.998 is approached within 0.3%.

Another simple way to obtain localization in this system
is what we may call the sudden-switch method, which uses
step-wise constant fields.21 We wish to compare the effec-
tiveness of both methods to obtain localization. First, let us
summarize the basic procedure of the sudden-switch method
�see Fig. 5�. Starting from the ground state one applies two
successive steps of constant electric field. In the first step one
goes from zero field to the field corresponding to the first
avoided crossing, i.e., E=4.81 kV /cm in our case. While the
new field is on, the probability PLL oscillates with the fre-
quency corresponding to the energy splitting at the avoided

FIG. 4. Probability PLL as a function of the time-dependent
electric field E�t�. The velocities of the electric field are as follows:
�i� 4, �ii� 1, �iii� 0.4, �iv� 0.2, and �v� 0.04 �kV/cm�/ps. With circles
we represent PLL of the adiabatic ground state as a function of the
electric field �see text for details.� Inset: closer view of the first
avoided crossing involved in these processes. The arrows indicate
the adiabatic path. FIG. 5. Localization with the sudden-switch method. While the

electric field stays at the avoided-crossing value �E=4.81 kV /cm�
the probability PLL oscillates with the frequency corresponding to
the energy gap �dashed lines�. The method consists of increasing
suddenly the electric field when PLL is maximal, freezing the local-
ization on its highest value �full lines�. Upper panel: probability that
both electrons are in the left dot. Lower panel: step-wise constant
electric field.
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crossing. This oscillation occurs because the initial state is no
longer eigenstate of the Hamiltonian at the avoided crossing.
In fact, it is a 50%–50% linear superposition of the two
adiabatic states �eigenstates� at the avoided crossing. When
the probability PLL reaches a maximum, that means that the
current state is the other diabatic state. At this time one
switches again the field to leave the avoided crossing. Far
from the avoided crossing the diabatic states are very close to
the eigenstates of the Hamiltonian, and therefore, are ap-
proximately stationary. Thus, the PLL remains at the highest
value attained during the oscillations at the avoided crossing.
With this method, a localization PLL of up to 93% can be
achieved, as can be seen in Fig. 5. While the time scales
involved in both methods are the same, in comparison, our
method has three advantages: �i� a higher degree of localiza-
tion can be obtained; �ii� the sudden-switch method requires
a fine adjustment of the timing not needed in our case; �iii�
our method is more powerful in the sense that can be used to
navigate in the spectrum and connect distant states.10

Let us now consider states with a different and in a sense
more complex kind of localization. As mentioned earlier, we
can find in the spectrum three types of localized states, which
we can denote in the following way: �RR�, �LL�, and �RL�,
which have, respectively, both electrons in the right and left
dots, and one electron in each dot. �Of course, these states
cannot be considered to be product states of single-particle
orbitals, because quantum correlations are generally present
in all of them.22� We usually refer to the first two types as
localized states, and to the third one as delocalized. How-
ever, a linear superposition of the first two types can also be
considered as localized, in the sense that one knows that both
electrons would be found in the same dot if a measurement
were performed. In Fig. 6 we show some control paths that
may be followed in the spectrum to reach a superposition of
�RR� and �LL�. Linear superpositions of the form
��RR�� �LL�� /�2 are always available at the center of
avoided crossings of states with RR and LL localization. In
Figs. 6�a� and 6�b� we show how to go from the ground state
to the Bell-type states ��RR�+ �LL�� /�2 and ��RR�
− �LL�� /�2, respectively, using only diabatic and adiabatic
transitions. We remark that these states are energy eigen-
states, and thus do not evolve further if the electric field is
fixed. If the restriction of using only diabatic and adiabatic
transitions is relaxed we can traverse the avoided crossing of
the two types of states with an intermediate speed thus ob-
taining a combination of the diabatic states after the crossing

ae−iERRt/��RR� + be−iELLt/��LL� . �3�

The values of �a� and �b� can be tuned by choosing the ap-
propriate velocity. We note that the effects of using interme-
diate velocities were illustrated previously �Fig. 4� in the
context of searching for a LL localized state.

We now show in Fig. 7 how the path �a� of Fig. 6 is
obtained by varying the electric field appropriately. In Fig.
7�a� we show the electric field and in �b� we show the prob-
abilities as a function of time �semi-log plot�. To arrive at the
desired state, we must cross two avoided-crossing adiabati-
cally, one at E=−4.81 kV /cm and energy=−437 meV, and
the other one at E=3.02 kV /cm and energy=−402 meV.

The first avoided crossing involves a RL and a RR state, and
the second one, RR and LL states. The energy gaps of these
avoided crossings are very different, and therefore the time
required to cross them adiabatically is also very different.
This is the way the log scale for the time axis is used in Fig.
7. We see that once the electric field is left constant the
probabilities PRR and PLL oscillate between 0.465 and 0.495
while the overlap of the final state with the target one is
equal to 0.98, showing that we have arrived at the desired
state. The other two paths shown in Fig. 6 can be realized in
a similar way, and with the same degree of success.

B. Coherent superpositions

In Sec. IV A we used our method to control the localiza-
tion properties of the target state. Now we illustrate the flex-
ibility of our method by obtaining coherent superpositions of
several adiabatic eigenstates. For example, we may wish to
obtain a linear superposition of the three types of localization
having each of them the same weight. That is, we seek a state
of the form

��� =
1
�3

�a�RR� + b�LL� + c�RL�� , �4�

with �a�= �b�= �c�=1.

FIG. 6. �Color online� Control paths for two electrons leading to
target states which are superpositions of states with RR and LL
localization. The lengths of the arrows indicate the velocity of the
transitions. The target states are: �a� ��RR�+ �LL�� /�2; �b� ��RR�
− �LL�� /�2; �c� state given in Eq. �3�.
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In Fig. 8 the control path to such a state is shown. In Fig.
9 we show the overlap of the evolving state with the first six
adiabatic states and the electric field �the control parameter�
as a function of time. To appreciate the evolution in greater
detail we plot the evolving state at chosen times in Fig. 10.
The initial state is the ground state �see Fig. 10, state at time
t1=0�, and the final state is a superposition of the states 1, 5,
and 6 at the electric field E=3.04 kV /cm �see Fig. 10, state

at time t6=1000 ps�. We start the evolution by increasing
slowly the electric field �blue arrows in Fig. 8�, so that the
state remains at the ground state �see Fig. 10, state at time
t2�, then we accelerate to cross diabatically the first avoided
crossing at E=4.81 kV /cm, and then we decrease the field
�green arrows in Fig. 8� in order to cross the same avoided
crossing in the opposite direction with an intermediate veloc-
ity. Here the occupation probability is split between the
ground state �33.3%� and the first excited state �66.6%�. This
is clearly seen at time t3 in Fig. 9. The electric field is further
decreased, slowly at first and then rapidly, so that the upper
branch crosses the complex avoided crossing at E=0 and
energy of −413 meV. Then an adiabatic increase follows.

FIG. 7. Numerical simulation of the path of Fig. 6�a� in order to
reach the Bell-type state ��RR�+ �LL�� /�2. The electric field used �a�
and the probabilities obtained �b� are shown as functions of time in
semi-log plots.

FIG. 8. �Color online� Schematic diagram of the path to obtain
the target which is a superposition of three adiabatic states with
different localization �Eq. �4��. For clarity, we use different colors
�online version� when the electric field is increasing �blue and red�
or decreasing �green�. Our initial state, the ground state without
electric field, is indicated by a filled square. The desired target state
is a combination of the three adiabatic states indicated by � .

FIG. 9. Upper panel: electric field as a function of time used to
carry out the control strategy schematically shown in Fig. 8. Lower
panel: overlap of the evolving state with the first six adiabatic
states. We can clearly see that the final state approximates well an
even linear combination of the adiabatic states 1, 5, and 6 at the
corresponding final electric field.

FIG. 10. Evolving wave function at various times during the
time evolution schematically shown in Fig. 8 and described quan-
titatively in Fig. 9. See text for details.
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We again cross the complex avoided crossing �time t4 in the
middle of the avoided crossing and time t5 after crossing it
adiabatically�. We see that the state at t5 is a combination of
a RL and a RR state. We continue slowly until the upper
branch approaches the last avoided crossing at E
=3.02 kV /cm. Here the velocity is chosen at an intermedi-
ate value, so that the occupation probability divides itself
equally among the two states. The end result is a superposi-
tion of the three states mentioned at the beginning. This is
clearly verified in Figs. 9 and 10, state at t6=1000 ps. In this
simulation, the final square overlap with the adiabatic states
1, 5, and 6 are, respectively, P1=0.324, P5=0.325 and P6
=0.320, and then the final probability to find the target state
is of 96.45%.

V. FINAL REMARKS

In this paper we extended a recently proposed control
method for quantum systems with energy spectra, which, as
function of a control parameter, are characterized by the
presence of avoided crossings. While in previous publica-
tions we showed how to work with diabatic and adiabatic
changes in the control parameter, that is, using the avoided

crossing as a yes-no switch, here we explored the possibility
of using intermediate velocities to cross the avoided cross-
ings, thus obtaining linear combinations of diabatic states.
This generalization of our previous control strategy enables
us to reach more general target states, not restricted to eigen-
states of the system’s Hamiltonian.

The results presented here are for a two-electron double
quantum-dot structure, but are not restricted to that particular
system. Since the issue of localization is an interesting one in
double-well potentials, we have studied it here as an appli-
cation of our method. We showed how one can obtain target
states with different types of localization, like having both
electrons in one given well or having both electrons in either
well with chosen probabilities �Bell-type states�. Finally, we
have shown how to obtain a coherent superposition of three
states with each of the three types of localization present in
this system.
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